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ON THE EFFECT OF THICKNESS ON THE DAMPING IN ROLL 
OF AIRFOILS AT SUPERSONIC SPEEDS 

ABSTRACT 

The ef'f'ect of' thickness on tne damping in roll of' airf'oils·at 
supersonic speeds is investigated. The Ct - and the lifting pressure 

- p 
distribution f'or several simple airfoils are f'ound by the use of a second 
order theory similar to the second order theory introduced by- Busemann 
and extended by Van Dyke. 

The airfoils considered consist of' infinite wings with arbitrary 
symmetrical cross sections both swpt and unswpt, and of' a reversed 
delta wing whichlP.s a parabolic cross section, 

The f'lows considered are three-dimensional f'lows, and the methods 
emplc)yed are somewhat different f'rom those used by Van Dyke. The possi;.; 
bility- of using the methods employed in the present paper f'or other f'low 
problems is discussed briei'ly. 
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SYMBOLS 

aspect ratio 

local velocity of sound 

airfoil span 

velocity of sound in free stream 

velocity of sound in air which has been brought to rest adia
batically 

pressure coefficient 

damping in roll lim 

p ...... o 

airfoil chord 

( Pressur_e, ) 

l/2 pv2 

( 
rolling moment ) 

l/2 p v2 ~Sb 

arbitrary :f'Uncticin associated w.i.th the equation Of the airfoil 
surface (see equation (59)) 

k, k:i_, k2' k 3 constants 

K(t) arbitrary fanction of time 

{ a distance small canpared to unity 

M Mach number 

m slope of leading edge (cot A ) 

N • (r + 1) ~ 

2132 

2 . 
~ill ·v1 + jv2 + kv

3 

p pressure 

p rate of roll 

q velocity vector 
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v 

x, .,., z 

a• 

y 

/; .. 
13, , '} , ~ 

polar coordinates 

area of airfoil 

equation of airfoil surface 

time 

free stream velocity 

rectangular coordinates 

.I (32m2-1 

aUx:iliarj" functions used in finding the second 
order potential. functions 

adiabatic exponent 

para.meter small compared to unity 

rectangular coordinates 

e1 92, and 9
3 

auxiliary functions used in f indilig the second order 
potential. function 

~1 .. 
~ 

A 

vl, "2·· 

p 

a "' x 

a • .,. 
~ ,.. 
r/ 

?// 
fl. 

V3 

leading edge sweep back angle 

minus the slope or the center line or a reversed delta 
wing 

direction cosines of outward normal. to element of area da 

density 

~~ 

second order perturbation potential f'wlction 

first order perturbation potential 

second order correction potential 

scalar potential function 
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INI'RODUCTION 

The damping in roll coefficient, Ci 7 provided by fins and wings 
p 

is important in the design of certain types of finned missiles and in 
stability studies of aircraft. Fortunately for lDlllV cases the effects 
of missile bodies and aircraft fuselages on the C'Lp can be neglected. 

In these cases the c
1 

can be found from a stuey of the isolated air-
p 

foil13. The use of the linearized theory of supersonic now has pemitted 
an evaluation of the c

1 
for a number of different types of wings and 

·P 
fins (for example see references 1 through 6). Expressions for the c

1 . p 
found by the linearized theory depend upon the Mach number and the plan
fom geometry am are independent of the thiclmess distribution. Tests 
conduCted in the free night Aerodynamic Range of the Ballisti'C Research 
Laboratories· at Aberdeen Proving Ground (reference 8) indicate, however, 
that for certain rectang'lilar fins the thickness distribution has an 
appreciable effect on the c

1 
• Thus, it appears that a stuey of the 

p ' 
second order now around rolling airfoils might yield some useflil infor-
mation. · 

The present paper presents the c
1 

for several simple airf 0ils cal-
. ·p 

c'lilated on the basis of a second order theory similar to the one intro
dUced by BUsemann (reference 9) and extended by Van Dyke (references 
10 and 11)". The airf'oils considered herein consist of' infinite 'Wings 
with arbitrary symmetrical cross sections both swept and 1inswept, and of 
a reversed delta wing which has a parabolic cross section. It is the 
authol'lfl opinion that from the stuey of these relatively simple airfoils 
the effect of thiclmess on mal1Y" other airfoils can be estimated·• 

The analisis. contained in the present paper utilizes the same type 
of iteration: as that used by Van Dyke in reference (10 and ll). There 
are, however, two distinct differences· between the analyses of Van 
Dyke•s and the present· paper. Firstly, the partial differential equa
tionS differ; secondly, tm methods of determining the second order 
solution are not the same. 

ANALYSIS 

Introduction: 

Recent ~rlc by Milton D. Van Dyke (references 10 and ll) iridicates 
that second order solutions of the partial differential equation of -
steaey supersonic flow can be obtained by the use of iterative methods: 

6 
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The partial differentili.l equation considered: here is not the equation of 
steady supersonic flow. It is quite similar, however, and we shall assume 
that the sec6nd order solution can be obtained by iterative methods· • 

. 
It w.i.ll also be assumed that the characteristics are· the same for the· 

first and second order solutions (this assumption was made in references 10 
and 11)-;, For steady plane fl0111 the second order solution (reference 10) 
found by using an iterative method based on the preceding· asslimptiori-jields 
the correct second order pressure of the Busemann second order theory~~··· 
Ulli'ortunatel;y, no such justification of-the precedi~ asswnption is known to 
the authors for three d:imensional nows~ 

The iterative method used in references 10 and 11 requires a parti
cular integral of the nonhomogeneous second order partial differential 
equation in terms of the first order solution-. The particular integrals 
utilized in the present paper appl;y only to the particular problem under 
consideration. The method developed here has the advantage that it can· 
be applied to problems in three dimensional now where a particular inte
gral of the nonhomogeneous second order equation in terms of the f'irst 
order solution is not available in the literature. 

The Partial Differential Equation: 

The partial differential equation for the potential function to be 
used is a special case of the three d:imensional time de:i;iendent-equation 
for the potential function of a non"'Viscous compressible fluid. For 
completeness this equation will be determined from the equations of 
h;ydrodynamics. 

Four of the equations needed are contained in the equation of con
tinui ty-s 

-
V0 pq+-i •O 

and in the three Euler equations: 

' 
l l 2l'ln 
- VP + '2' V q + ~ 
p at 

• 
•O 

where q is the velocity- vector and p is the density~ 

(1) 

(2) 

·· Equations (l) and (2) give four relations between the five variables 
P;p and the· three components of cf~ A fifth relatio~ is obtained i'rom the 
asswnption of uro heat transfer (constant entropy-)-;, In the case o:t a 
perfect gas this· relaticll is 

p'" k pT (3) 
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where k is a constant and y is the adiabatic exponent. 

It will be assumed that the velocity can be expressed as the gradient 
oi' a potential function; 

q= v.n. (4) 

. Equation (2) may therefore be written as 

l l 2 a - v p. + - v q + ~v.n.- o 
p 2 

Th!3 preceding equation can be integrated to yield 

.12. t + ~ q2 + J ~ '" K (t) 

where K(t) is an arbitrary function of time. The function K(t) is a 
coriiitaiit--( to ·oe -denoted by K) for problems which will be considered here 
since the now upstream oi' the airfoils is independent of time. 

' ' 

The result of evaluating the integral in the preceding equation by 
the use of equation (3) is 

.!l ·· + l q2 + r' k 
t '2' (y-1) 

T-1 
P • K (5) 

The first partial derivative of equation (5) with respect to time can be 
expressed as (with the aid of equation (3) ) 

n l ,,. 2 l oP O (6) 
.. u.. tt + '2' ~.::. + ~' 'l§t .. 

' ~ p 

Equation (1) can !Je expressed as 

. l( E£ () v • q + p q • 'V p + ct>-· 0 7 
dP • 2 

Denoting a:p• the square of the velocity of sound, by a it follows that 

equation (7) can be written as 

. i C .. 1...,P l ~)-o V' • q + T q ·~ -P <t· + - "" 
a P 

(8) 

Eliminating P and p fran equation (8) by the use of equations (2) and 
(6) yields 

(9) 
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. , 

Equation (9) can be written in terms of the derivatives of the potential 
~~~~~ ._ . 

a + ~ (v.a..v.n.) 

(10) 

Equation (10) is the three dimensional time dependent partial differential 

equation for the potential function provided a2 is e:xpressed in.terms of 
the derivatives of the potential function. 

By- definition 

By- equation (3) 

dP 
ap '" a2 

a2 • k Y' P y-1 
• 

Substituting this relation into equation (5") and solving for a2 yields 

a2 .. c 2 - ::c•; (.fl~ 2 + .0. . 2 + .n . 2 + 2 A. ) (11) o 
2 

x y 1.z · t 

The function a is the local velocity of sound and the constant c
0 

is 

the veloc:(ty of sound in the gas wpj_ch ~ been brought to rest adia
batically-;; It is comrenient to express a in terms- of c, the velocity 
of sound in the undisturbed stream ahead -of ·t.fle·-&irt'oil~ I-t :follows 
from equation (11) that c is 

c2 • c~2 - <I?> v2 
The result of eliminating c 2 from the preceding equation and equation (11) 
is 0 . 

2 2 1 - 2 ""2 . 2 - -2 
a .. c - I;;... ( 12. + ..Q. + .Q + 2 ft... - v- ) 

<: x y z .. 

A perturbation potential _will be used which is defined by 

1l • V (x +l) 

(12) 

Note that the perturbation potential has been normalized through division 
by the free stream velocity • 
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Introducing the perturbation potential into equations (10) and (11) 
yields 

- . - a2( 4) xx- + . ..&~ + : ) .; f + v2- (. l + ~ )2 cP -- + 
~u ':&'zz · zz x -xx 

(l + i ) ;i; .. J: + 
. x ~.,. '1:7'1' 

(13) 

c 

2V~ i +2Vf' f 
'1' yt z zt 

and 

a2 • c2 - <r-1) v2- (2 i! + IP 2 
2 x x 

+ s? 2 + i 2 + ~ ~ t> (14) 
.,. z 

Equations (13) and (14) can be combined to yield 

It· + ~ - • ff ) + 2 ~ ~ .. 2 i - f ·_ + 2 t t · + 
\._1; XX Tl' ZZ X XX y X8' z xz 

(15) 

2::#..··#..,.· 2.ri ('.i 2 .. ib .. + <r-1i_(iJ2+i_.2.~2;'&··+ 
T-:rx"!t _ _.. •v .~.,,. J_ +v.~9 ~ ' ~ 

...... <I JU M_·zt X .,. Z XX 

2 2 2 
?; + ~ ) .. ¢ ~ + l> i + ~ (Ji. + 2 t q; ~ + • 

Tl' zz/ x xx: .,. Tl' z zz x .,. X1' 

_. 

2 if; cjz ~Y'Z 
+ 2 q, Cb ~xz} •• '1' ·x '" z 

10 
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' 

-
' 

It will be assumed that for the airfoils considered here the triple 
products in. equation (15) can be neglec:ted. Based oa this assumption 
equation (15) reduces to 

~- 2V 
G --"' &. zr. c 

~ '\ +2~ 
zz/ x 

z 
., 2 ~ ~ 2 
~ +- Cl + "" ~) . :x:z " "' x xt • ., .,. 2 4> 

)", . l 
'/;_( -~ xt c 

?? • i1f{.,..1) ( i + 
tt ' l' x 

(16) 

Equation (16) can be expressed in cylindrical coordinates b,y 

• 

rt-.( (y-1) ( ~ 
·~... \ x• 

2 
+-~

(r•) 

l +co + r1 
.. r•r• 

+ 1 Q \+ 
(rt )2 .. 9 t&tj 

(17) 

+ 
2 

§ r• 9,? xtrt • ~ ?/? x• ??x•t• • 

The coordinate· axes of equation (17) are fixed in space • It iS mare 
convenient, however, to choose a new set of axes fixed to and rolling with 
the body, the x-axis coinciding with the axis of roll. The relations between 
the components of the t110 sets of axes are: 

x-:x:t 
r-r' 
9•9' - ptt 
t=t' 

. 11 , 



In the new coordinates equation (l 7) becomes 

-~29} •t +! .;9·+~ ~ -~~ .. ·2? ii. _lq;-- + 
xx rr r r r ee c xt c x9 ;:t tt 

·~ ~· -
c tt 

2 
~ * . .; f (y-l) c~ + ! 
c ee :orx v f - ' t I t &) • 

+ 2 ~ + ·c~·+i 
.· xx rr 

+! 
r xx 

The flow over bod:ies rolling w:ith constant velocities is independent of 

time; thus, for the cases to be considered here the tillle derivatives ~ 
zero in tbe preceding equation. Terms such as 

9, · c'JS · · , etc ~e of the third order and can 
x "'x9 

be neglected. It follows from the preced:ing equation that the partial 
differential equation (correct to the second order) for the flow over 
bodies with constant rates of roll is given (in rectangular coordinates) 
by-

Ml [ (yel) ~ 
J "'x I. 

+ 2 it? <i. + 
x xx 

+2 ... 
~ 

z 

(18) 



Equation (18) will be used in the following ana:cy&is of rolli.ni airfoils"; 

Pressure Relation: 

The pressure coefficient to be used is a special case of the preslfUI'e , 
coefficient for a three dimensional t:i.DB dependent now·. 

The pressure coefficient will be defined ~ 

C - P-P o . 2 ( p . po ) 

p '" ~ PoV2 '" V1 , ii:;' - A:/ (19) 

The square of the local velocity of so1Jild is 

82. dP 
Qp 

FrOl!l this and equation (3) it follows that 
.! ti 

'2 dP -1 Y' y 
a •ap•ykp,. •k. yP 

and (20) 

In the undisturbed stream 

Po . c2 

- ·-Po Y' 

The pressure coefficient can now be written as 

2 ( p , c .. __,. 1f - l;· 
p yM"' \ 0 ' 

(21) 

FrOl!l equations (20) the pressure can be written as 

In the undisturbed stream 

Po 1~) i!r 
\i1k.L/'f' ' 

PROPEF.TY Oli' u.s"' ~ 
ST INFO ll" 'J'~CR " · . .., - · . -..... ~JOOv 
i:;::r_. ~ J_.-;:, ~ ~ ._,. 

13 



From the two preceding relations 

.fr -(~.) ;if;,: 
o !C . 

SUbstituting this expression into equation (21) yields 
I 

Substituting equation (14) into the preceding equations gives 

. 2[~ l .2( 2 2 2 2 j~ } c ·--.,. .. 1-l? ir 21 +Ci + ~ +I •v'P _.,... -1 
P 't"M"°l x x 'Y' ·z t 

(22) 

Equation (22) is the pressure coefficient for a three dimensional unst~ now. . . 

Expanding equation (22) about the free stream conditions _yields 

'2 2 
+ 2 J fx +.,. 

x v 

In rolling coordinates equation (23) becomes. 
(23) 

- 4? 2 - ?:> 2 + f32 ~·· 2 + (24) 

~-2 + 
t 

'Y' z x 

••• 

For the now associated with steaey rolling equation (24) becomes (correct 
to the second order) · 

c ; 
p 

2 2 
~ + 

z 
(2S) 

Equation (2S) will be us·ed in the following anazysis of rolling airfoils • 

• 



Method of Iteration: 

It will be assumed that equation (18) can be solved by ari"iteration
procedure. The first step is to find the f:j.rst order solution. The first 
order partial differential equation is obtained by neglecting the second 
order terms in equation (18). Thus the first order differential equation 
is 

rj+ '1 -0 (26) 
Y'1' zz 

The first order solution is taken as the first approximation to the 
solution of equation (18). It is assumed that the second approximation 
can be found by substitutillf( the first order solution into the right side 
of equation (18) and solvir.g the resulting nonhomogeneous equation, which 
from equations (18) and (26' is 

+ ·''" 'I' 
Y'1' 

where 

N .. Cx-l) r/ 
. 2'P2 

+ '1 z 

The solution of equation (27) will be referred to as the second order 
solution. 

(27) 

The particular integrals utilized iii solving eqUa.tiori (27) Wilroru:y 
apply to the problem under consideration. A different particular integral 
is required for each problem. 

Boundary Conditions: 

Physical considerations require that the now be tangent to the 
surface; and that all velocity perturbations vanish upstream of the 
airfoil. Tllese. ~undary conditions may be expressed mathematicaJ.J.y as: 

rj (x,y,z) • 0 upstream of the airfoil, 

and 

q."7's•O 
where s(x,y,z) • 0 is the equation of the surface of the body. 
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The equation of the surface of the , body may also be expressed as 

z =· 5 f (x,y) 

where c is small pompared with unity and f(x,y); thus, 

· ar of 
_,, s - - i€ ~ - j e; ~ + k 

Since the velocity.,q, can be written as 

q,., i (V + Vf': + V}ll: ) + j(V!1. + V1' + pz) + k (W + vyr + py) · x .X Y·, Y' Z Z 

it follows that boundaey condition on the body surface is given by 

-(V + vrJ. + v"; ) ,; - (Vf': + VJ,. + pz) a + vrJc + v ,fr + py "' o x r x x .,. r,.. y z rz 

..,of e of' 
where c:rx "' ,.. ~ and a7 • ,. ~ • 

The coordinate axes will be chosen so that the airfoil under consider
ation lies approximately in the z .. 0 plane. The boundar,v conditions for 
the first order solution are given by: 

r/ (x,y,z) .. 0 upstream of the airfoil, 

and 

(28) . 

Similarly the boundar,v con:litions i'or the second order soluticn are given 
by 

"f • 0 upstream of the airfoil 

Unfortunate:ii for the airfoils considered in this paper the first 
order velocity components are discontinuous across the Mach sheet from 
the leading edge. The effect of"these discontinuities on the second 
order solution must be evaluated. 

16 



z 
Leading Edge 
Mach Sheet 

a Leading Edge Moch Sheet 
With Zero Thicknea 

c Discontinuity In ••Across 
Leading Edge Moch Sheet 
Along The Line z= z, 

z 

X•-~ ~X•-p Z +I 

b Ltadlng Edge Mach Sheet 
With Assumect Thickness 

d Plot Of (),,Across Leading 
Edge Mach Sheet With 
Assumed Thickness Along 
The Line z • z, 

FIG. 1. An illustration of removing the discontinuity in If> x across the leading edge Mach sheet 
by assuming the Mach sheet to have thickness. 
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rn order to evaluate the effect of the discontinuities in the first 
order velocity components we shall assume that the; leading edge Mach 
sheet has a small but finite thickness, within which the first order 
velocity compon~nts will be made continuous. Thus, the discontinuities 
through the Mach sheet are replaced by conti?IUOUS functions. This process 
is illustrated in figure 1 for the velocity component in the free stream 
direction for ·an airfoil with leading edge perpendicular to the free stream. 
The effect of the discontinuities on the second order solution will be 
found by obtaining the second order sol'l.ltion within the Mach sheet and 
then letting the thickness approach zero•*-

The procedure outlined in the preceding paragraph will be illustra
ted by considering the case of an infinite rolling rectanglilar airfoil 
having a constant initial slope,€ ,. along its leading edge. Only the 
Mach sheet above the airfoil will be considered since the Mach sheets 
above am below are of the same form. The discontinuities through the 
leading edge Mach sheet depend only on .the initial slope of the airfoil; 
therefore the discontinuities in the first order velocity componentS 
through the Mach sheet above the airfoil will be the same ~s those through 
the Mach sheet above a nat rolling airfoil having a constant slope ~ • . . 

The first order potential function· associated with the .flow over the 
upper surface of an infinite rolling rectangular wing with a constant 
slope E - is given by · 

r; •(pt _ € ) (xppz) 
:i' 

where the airfoil lies approximate:cy in the .-o plane**~ 
The discontinuities in the first order velocity components through 

the leading edge Mach sheet above the airfoil are from equation (30) 

/::;,. 'iy - 0 

/::,,, rjz .. (~ + e. ) 

(3-0) 

It will be assumed that the Mach sheet has a small thickness (see 
Figure 1-b)'. The velocity. components within the sheet will be defined as 

* An alternate approach would be to attach a small surface to the leading 
edge of the airfoil which would cause the first order velocity components 
to be continuous. The effect of the discontinuities would then be evaluated 
by a limiting process in which the widtjl of the small attached surface · 
would approach zero. · · 

**Equation (30) _can be found by the integration of' a source distr:l;bution; 
(see references 7 and 12) however, for simple problems such as this a 
heuristic method generally yields the result with a minimum· of effort. 

18 



r/. • 0 y 

,... \ (x - Az · 
- 'C ) 7·~'" . ) 

(31) 

wmre f is the thickness of the .Mach sheet in the x direction. Note that 
within the Mach sheet 

2 . 
-~ ¢:xx + ¢ yy + ¢zz • O 

and that the velocity components are continuous functions in the neigh
borhood of it~ 

Fran equations (27) and {31) the differential equation within the 
.Mach sheet is found to be 

. 2 t -'- ·'- 2rl- (,Et 
-~ + iv- • I/I - • T -r :xx I '3"1' / zz , 

'= 

+ 

(32) 

It is well known {references 7 and 13) that the solution of the non
homogeneous equation 

-~2 Y'xx +- f '3"1' + fzz • F(x,y,z) 

is given by 

yr (~,~.z) .. ~ ff f 
. v 

f 

s 

]9 

(~ 



where 

R• 2 2 2 -13 (y -~) -13 

- 2 . I\ • -il3 "1 + j 'lt2 + n3 '"1•"2•"3 are the direction 

cosines of the outward normal to the element of area da, s is an arbitrary 
surface which cuts the forward Mach cone from the point (x,y,z), v is the 
volume inclosed.in the forward Mach cone from the point (x,y,z) and the 

surface s, and the symbol t J [denotes the finite part of an integral as 

-
defined by Hadamard in reference (12).) 

The result of applying equation (33) to equation (32) is 

'// (x,y,z) . -~fffi ~{~ (~ -~) + 

v (34) 

· ... {N ~fl1 - e: )2 J (~ -13))} d~ d~ d5 + 
f 

l !II (.!. "l r,t - ¢\lft) • I\ da 2n R 
s 

where the volume, v, is the volume of the Mach sheet within the forward 
Mach cone of the point ( x,y, z) • The surface s will be chosen so that it 
is made up of the z=O plane and an arbitrary surface upstream of the Mach 
sheet. 

The integral over the surface upstream of the forward Mach sheet is 
zero so that the surface integral in equation (34) can be reduced to 

f f 

l If <i '1 r,t - ¢Vi;) l JI ["'s<s ,, • 0) 

2n • I\ da .. - 2'ii 

s sl 

+r,t(5,~ 
a 

• 0) 'l!ii ~] ds al 

20 
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The area s1 is the area of the z•o plane wh;ic}l. is within the Mach sheet. 

and the forward Mach cone from the point (x,y,z). From reference 7 page 
a .2. the preceding integral can be eJCPrt?ssed as 

f . ,· 

1 
da. - -

It 
f/¢3(4.R>f'• 0) 

s 81 

It follows from this expression that equation (34) can be expressed as 

(~ - p S' >} d.!,. d~ d~ + 
(ss) 

(~ - ')~ 
. 1 Jr + -.,, n.i: , 

v R 

In order to evaluate the second order solution on the down stream 
side of the Mach sheet the po~t-(x.Ly,z) will be located at an arbitrary 
point on the surfa.6e x = · p z + f. 'J:he thir.kness of the· Mach sheet wa8 · 
chosen to be small. It follows that ·for given value.<Jcif ·s- and :> the· 
Variations in the iritegrand of the vollime and surface integrals. are made -. 
up almost completely of the variation of !. ~ This allows the substitution 

·a 
of y '"1" in the integrands except in R. Equation (35) can now be reduced 
to ' 

z Ii) +f 

Ml- J r r 
yr (Pz + f, y, ~~ (~ -l) + z) • - 1if J 

" 0 p ~ '\.,,.;. 
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. 2 
N Cf - ti) · 

y +.&-~)2 + @2(z-S'l2 

13 

+-- .-
f 

Integrating with respect to 7"! in preceding expression gives 
'· 

z 13 ~ +f 

d e; J { , (, -=-> + 

13 ~ 

. . M2- ( 
ij'"Cl3z + f, y, z) • - nRP J 

0 

r' -
0 

Performing the remaining integrations yields 

,· .·. ??- - . 
f (f3z + f,y,z) = - rs:,!l- ~ ~) z -

f 

+ 



• 

Taking the limit as f approaches zero and replacing z by J gives 

A ¥-1 
x .. ~z 

~(N+l) p(!yx 
2 -

~ v 
+ 

-- ~ N ~ 2 x - (36) 

Equation _(36) is the value of the discontinuity of the second order· 
potential function associated with the now over the upper ·surface of a -
rolling airfoil which has a leading edge with a constant initial slope and_ 
zero sweepback. 

Similarly the discontinuity of the second order potential fuaction · 
associated with the flow over the upper surface of a rolling airfoil which 
has a sweptback leading edge with a constant initial slope is found to be 

(37) 

where 

The Infinite Rectangular Wing with an Arbitrary Cross Section: 

In this section the ·second order potential fUnction·associated With 
an infinite rectangular wing -of arbitrary cross section will be determined. 
The coordinate axes are-chosen so that the y-axis coincides with the lead
ing edge (see Figure 2'). .The now over the upper and lower surfaces 
are similar; therefore, only the now over the upper surface will-be
considered in detail. The equation of the upper surface will be represented 
by 

z. e f (x) -· (38) 

where e is small compared to unity and f (x) is of the order of unity~ 
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FIG. 2. Coordinate axes used In the analysis of an Infinite rectangular wing. 
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The first order solution is 

(39) 

It follows fran equation (39) and equation (27) that the second order 
potential functions must satisfy. the nonhomogeneous equation 

~P2"f rx + Y'~ +JP zz • 2JI [ ~;2 -~ (N + 1) f" + 

+ t! 
2 

N f~ fll J 
where the primes denote derivatives •. 

The potential function~ will be divided into two parts 81 and 82 

such that 

-p2(81):xx * (al):yy + (el)zz • 2.,/- [ ~xp2 -~ (N+l) f" + 

+ 6 2 N ft fn] 
and 

(40) 

(a) 

(U) 

(b) 

Bi inspection a solution of the nonhomogeneous equation (U-a) is found to 
~. . 

(42) 

The boundaey' conditions require that: (from equation 36) 

(43) 

2s 



and (from equation (29)) 

ael I • rz ) 
z=o 

ae2 / ,,, 2< >2 
+ rz . = - !:.r!f- £• - er• + 

z•o 13 

+ 13~ 2 f £11 

Fr9lll equations (42), (43), and (44) ' 

(45) 

and 

The function e2 will be expressed as the sum of four functions r
1

, 

r 2~ r3·. and r 4' such that 

... ·.·. 

i - 1,2,3,4 

PO 

r2·l 
a ,,.. 

J 2 • O; ' 2 £ fll az ... 13 e 
x-13111 -/ 

r 3 I • O; 
ar3 I • € 2ch-2> (£')2 az-

x-13111 Ill"'() 213 

r41 - - ~<N•4~12x i ~ I· -'"° 
x-13111 213 z=o 
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By inspection 

' ... 

r 1 • '51- (-J N + 132 )f (x-pz) 
vp .... 

x-pz 

r 2 • - e2 J f( 5 ) ftl u;) d i; 
0 

:x:-jlz 

J [ r·c~>] 2 
dE, 

0 

The function r4 was found b.)T assuming a solution of the form 

(x-l3z)3 J 
where Ki and ~ are undetermined constants • This leads directly to the 

result 

Hence 

r4 • -J(N$ P
2 ·{~ x ~~ + 

-- 213 Jfl 

. 2~132 [<x+l3z); + (x-jlz)3]} 

4 
92 • .71 ri • ~ (!h+p2 

-1) f(x-flz) + 
i•l . V3 
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x-f!z 

-62 J .f(z) f" 

0 

. 2 _.2 
(;) de, • ( (llrN-2) 

2132 
0 

Since the second order potential function is expressed by 

i '" rJ + ~" rJ + 81 + 82 

(47) 

the second order potential function is given by (from equations (39), .C42), 
and (47)). · ' 

~ .. El (x-f!z)- e f(x,;.@z) + ~':i2 x + 
. Vf! p "" 

+ €PY ~(N+l)z 
Vf! 

~ .f. 2~~N-2l 
2f! 

i.i.,_ (N+4) 
213¥ . 

0 

28 

(48) 



' 

From equations (25) and (46) the pressure coefficient on the upper 
surface of the airfoil is given by 

~ ~2(, (N+4) Cl+ ~ ) } 
2fl . 41! 

(49) 

• 

For airfoils of symmetrical thickness distribution at zero angle 
of attack the pressure coefficient on the lower surface of the-airfoil 
is the same as that on the upper surface with p replaced by .•P• The 
pressure difference coefficient can. therefore be expressed as 

ACP =op (p) - op (-p) 

It follows from the preceding relation and equation (49) that 

ACP "' - ~ I l + ; I>fN fl (x)J 
Note that the second order ef:f.'lilct in equation (50) is a function o~ of 
the local slope of the surface, ~ft (x). 

It should be noted· that only terms multiplied by p and p E. contribUte 
to the lifting ·pressure • This is true in general since the nonhomogeneous 
equation ued in finding the second order solution is linea.JT and each term.· 

on the-right side of the equation is multiplied by either p 9 E. , p2, ·pe. , 
or E. 2'~ In the following analysis terms not multiplied by p or pe will 
therefore be .neglected~ 

A Region of Flow Over a Reversed Delta Wingg 

The potential .function associated with the region o.f flow which is 
not affected by the -center section of a reversed delta wing will be found 
for a wing cross section given by 

z ~ € {~d ~ gz --x) (51) 

The region of flow considered and the cross section are illustrated in 
figure :f. 

' 



z y 

a a 

-----Mach Lines 

a. Cross Hatched Region Indicates The 
Region Of Flow Not Affected By' 
The Center Section 

z 

b. Cross Section View In Plane a-a 

FIG. 3. The reversed delta wing with parabolic cross section. 
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The linear solution is 

The boundary' condition behind the Mach sheet fran the leadiilg ·edge 
is not f.he same· as that for the intinite wing treated in the previous·· 
section. It is, however, quite similar, and by the same type of analysiS 
as that used for the intinita wing the boundary- condition behind the Mach 
sheet from the leading edge is found to be {neglectiilg all terwi ·not· · · · 
multiplied by p or pE. as per the last par~raph. of the precediilg section) ,. 

·-·. 

~ ctix) (,3) 

From eqUll-tioI)s (29), ('1) 1 and <'2) the boundary condition for the 
second order pptential function in the·z-o plane is found to be 

('4) 

The nonhomogeneous equation for the second order potential. :function 
is (from equations (27) and ('2)) 

-P2 lh + 1t + Yr. • Juf Pe [<~1) y + ~ ~ *] 
T= 'f yy zz v . P~ 

The- -~ecotid order potential 1'mction, f Will be divided into three 
parts, e1, &2, and e3 such that 

. .-t · &~ + e2 + e;, 

. ~:1 . :~1 . ~pe [ <m•i>:r • A _ ~] 
ae1 
~ 

.-

• 



a20 #02 a2e 
-'P2 

2 2 

~ 
+ ::2""" + - ::2""" • 0 a.r az 

! . ae2 l u 62 -0 • rs I • • az • 
x-'(>z z-0 z=O 

. ti 
x= '(>z x- '(> z 

It is easy to verify that the functions e1, 02 and e
3 

are 

el • - r/p t: (N+l) (x2 - ~2z2) y + (a) 

rp2v 

32 

_ {_x-_llz~ 3] + 
16'(> 

+ 272 
+ ; '. (x-'(>z) 

! 

+ (56) 

(b) 



am ; 
. 9. "' ~ i pr:_{N+l) 

2 2x3 (x+~)3 ~x 
L "A- + --- ~ + 3 . 2v .3Al32 .· . 13 12>.13 (c) 

-
The second order solution is 

~ "' 'i + /: • 'i + 81 + &2 + 93 

or from equations (52) and (56) (neglecting terms not multiplied by' p or pe- ) 

'!? • i (x-pz) - .;. :e 1! c:~)(x2-p2z2)r + 

+4 M2\ r xz2 + ~'l)3. - (x-~z23 -.~ - pe~ (x-13z) + 
Vil - 613 613 ·0 13 

( x2 
' .. 3132 + (57) 

From equations (25) an:i (57) the pressure difference coefficient is given by' 

~c = - 4f Pi, -~ (M2N + 2) x2 
p l_VfJ 2~ 

_ p e 2.J!St... 
132V 

33 
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(56) 



The chord-wise lifting pressure is plotted in F.i.,aure . (4) l'or a 
reversed delta wing with a 5 per cent thick center section at a Ma.ch · 
number or 2 for twa spanwise stations. The chordwise lifting pressure 
variations presented in figure (4) are quite similar to those for ' 
infinite wings with the same cross sections·. 

The Infinite Sweptback Rectangular _Wing With an Arbitrary Cross Section:. 

In this section the effect or sweepback will be investigated by con
sidering the infinite sweptback rectangular w.ing with an arbitrary cross 
section. The coordinate axes are chosen as indicated in figure (5). 
The equation of the upper surface will be represented by 

(59) 

The first order solution is 

+ 

(6o) 

<::m --a. 

The second order potential function must satisfy the nonhomogeneous 

e:J.uation (neglecting terms multiplied by' p2 and €. 2) 

-~21··+1t··.+ 
xx: T yy 

+ l) 

+~fr+~ xftJ 
2"L 23 ] 

a. a. 

y ftl + .!_ fll + 
a 

The function 'If will be divided into two parts e
1 

and e2'~ The . 

function 01 is taken to be a solution of the nonhomogeneous equation, 

therefore e2 is a solution of the homogeneous equation. 

The function e1 was chosen to be 
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FIG. 5. Coordinates for sweptback wing. 
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I am 

- --

91-~[~(~+1) · m 2 
zYf'' - ~ z fl + 

. a: . 

.. 2 22 24 } 
= ?' ( N!2m + 1) zt - 7 x z fl (62) 

The boundary oondi tions require that 

( ~ 2 ~ + z~ fl(~) _(a) 

(63) 

~ z f • v;{ [- rf-m3 x + (132m4 + 2132m2-1) ;] f'~ * r (b) 
z-0 . 

Fran equations (62) and (63) it follows that 

&2/ • ?f-p)m ( N@~m2 + 1) z2 fl (0) (a) 
mx:-y-o:za() 2V a: a: 

and (64) 

I. · Ft [ 7 (- it:14zn4 - e4:;+1 + 3132+1) P:· + 
z=O . . 

(b) 
oz 

-~2( 22 - (.224 ~m ¥ _ 1) xr• + 1 n-1 m 
7 a: ~ a: 

By inspectio~ the .function e2 was found to be • 

j nrx-;:)du] + 

0 



mx:-z-az J m f(u) ~1 + 

0 

j1i-az f( u) du J (6') 

o . . . 
Fran equations (6o), (62), and (65) the second order potential function 

. ( 2 . 2 . ) 
is given by terms multiplied by p am €. have been neglected 

~ "' ~ {mx:-y-o:z) [ -mx + (2flm3 -1) y - ciz] + 
2Va 

Z3' f' + 

(66) 

( 
lfN~m6 - '.J.ra.2 + i) 

a J!'" -1) x r + 

• 
- 2?f-m3 ( wr,222 + l) 

a4 211 

From equation ( 66) the lilting pressure on the airfoil is given by' 
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I • 
surf ace 

• 
.. 

. (J I 4 
• (mx-t) r• (0) +~t 

(67) 

.,. fl + 

Figure (6) pt"esents the variation or the chordw:ise lifting pressure on a 
wedge with aJi.2.0 sweepback and with a 10 per cent thickness at a Mach 
number of y;; 

THE DAMPING IN ROLL 

The pt"essure coefficients found in the preceding sections· can· be used 
to inVestigate the effect or th:i.ckness on the damping in roll or some ·air
foils~ In the following sections some exact and approximate expressions 
are presented for the damp:in g in roll of several types of plan forms • 

The Infinite Rectangular Wings 

The damping in roll coefficient, C.i p' can be written as 

JJ 
wmii 
area 

For an infinite -rectangular wing the C l. ·· can be written' as 
p 

b/2 d 
l 

~J 
-b/2 

lim .. c • b-1» 
tp 

p-o J 
0 

(68) 

(69) 

Substituting equation (50) into equatioo (69) and performing the indicated 
mathematical operations yields 

C~ m - ~ [ l + j JIN ~ J (70) 

• 
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FIG. 6. The chordwise variation of the lifting pressure -V.1C /pd, on a wedge with a 45° sweep-
back and a 10% thickness at Mach numbei€ P 
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Equation (70) indicates that the effect of thickness on the Ct of an 
p 

infinits rectangular airfoil with a symmetrical thickness distribution 
varies directly as the thickness of the trailing edge. It can· also-be 
shown that to the second order the Ct is independent of the angle of 

p 
attack of the airfoil. 

From equation 
is found to be 

(50) the centsr of pressure on one panel 

d 

· · d/2 + Emf 
:Xad- · @d 

[ f(x) dx 

l + j- .,/- N re:) 

y .. b/3 

(halt-wing) 

(a) 

(71) 

(b) 

where i' is measured from the airfoil's leading edge and 'i is· measilred 
from the airfoil's center line. For the infinite wedge the preceding 
equations reduce to 

i"' d/2 
y "' b/3 

Figure (7) presents the variation of x/d with Mach number for various 
values of the-thickness parameter for an infinite wing with a parabolic 
cross section. 

The Reversed Delt4 W111f: 

An ipproximate expressien for the damping in roll of the reversed 
delta wing previously considered cari be obtained by assumirig the e:Xpression 
for the pressure distribution in t!U! region not affected by the center 
section is valid over the complete wing. 

Under this. asswuption the (appro:icimate)c l. ·_ of the reversed delta 
. . p 

wing is given by (from equations (58) and (69)). 

C • _ 1 + 2 Gdf N + 2) 
l.p OJf 5 E 2 

(72) 
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FIG. 7. The variation of the chordwise location of center of pressure, x/d, with Mach number 
for various values of the thickness parameter for an infinite wing with a parabolic 
cross-section. · 
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Figure (B) presents the variation of the Ci with Mach 111ll!11Jer for .. 
. p 

0 and 5 per cent thick center sections for various aspect ratios. It can 
be seen from Figure (B) that the effect of thickness is quite small in 
this case. · · 

From equation (58) the center of pressure is located approximately 
at the point 

1 6€ d{l'fN + 2) l'fN E d 
- d IT - 5 ~3 JR2 - 60)3 
x • ---------------------------~-------- (a) 

~ _ 2ed {n+2> 
;J· ~3"12 

(73) 

. 1 td (!'fN + 2) ] 
y. • b IT - JO ~3 4R 

1 .._ 2 c! d (J N ~ 2) 
3. ~3~ 

(b) 

Figures (9) and (10) present the variation of i/d and y/b respectively 
with· Mach number for various aspect ratios for reversed delta wings with 
0 and 5 per cent thick center sections. 

The Infinite Swept Wing: 

The damping in· roll of an infinite swept wing with an arbitrary 
symmetrical cross section can be obtained by substituting equation ( 67)
into equation (68) and perfonning the indicated mathematical operations. 
The Cl for this type of airfoi:J- is ~iven by 

p 

C .. ,. _ 2m [ l + E. l'f N@
2
m

3:f'(d)] 
lp 3Ci a3 d . 

(74) 

Equation (74) indicates that the effect o:f' thickness on the C'l. · of an 
. p 

infinite swept wing with an arbitrary symmetrical thickness distribution 
varies directly as the thickness of the trailing edge. 

. Figure (11) presents the variation of the C "l · with Ma.ch number for 
p 

10 per cent infinite wedges for various sweepba.ck angles. 

4J 



0
.2

0
 

0.
15

 

::: 
c,P

 
0.

10
 

0.
05

 

0.
00

 

I I I 

1.0
 

1.2
 

\I·
 I 

i ' 
I I 

''h
 I

 
! 

I 

{0
%

 T
hi

ck
ne

ss
 

Fo
r 

A
ll 

.e
~ 

4(
3 

A
nd

 
5 

%
 Th

ic
kn

es
s 

Fo
r 

'9
•0

0
 

A
t=

6l
 

A
l•

4 
J 

5 
%

 Th
ic

kn
es

s 

' I 

'~
I 

i 
I 

~
I
 

I 
I
i
 

I I 

I I I I 1.
4 

1
,1

 
I 

I 
I 
'
I
 

I 
I ! 

I 
l't

--
J 

! 

I i i ! I I I 1.
6 

I i 
' 

I 
I 

I I 
1.

8 
2.

0 
2.

2 

M
ac

h 
N

um
be

r 

!
i-

i-
-

! I I I ! I 
I I 

2.
4 

2.
6 

2.
8 

3.
0 

3.
2 

FI
G

. 
8.

 
T

he
 v

ar
ia

ti
on

 o
f 

th
e 

(a
pp

ro
xi

m
at

e)
 d

am
pi

ng
 i

n
 r

o
ll

 c
oe

ff
ic

ie
nt

, 
C

 ! p
' w

it
h 

M
ac

h 
nu

m
be

r 

fo
r 

ze
ro

 a
nd

 fi
ve

 p
er

 c
en

t t
hi

ck
 c

en
te

r 
se

ct
io

ns
 f

or
 a

 r
ev

er
se

d
 d

el
ta

 w
in

g 
w

it
h 

pa
ra

bo
li

c 
ce

n
te

r 
se

ct
io

ns
. 



... "' 

- .,d 

0.
25

 

0.
20

 

0.
15

 

0.
10

 

0.
05

 

Q
O

O
 

1.0
 

--
--

--
-
-
-
-
-
-,. 

__
__

_ ~
-
-
-
-
-

-
-
-
-
-

---
--

-
-

--
--

-
--

~
-
-

-
-
-
-

----
i-

-
-
-

--
----

v 
..-

,. 
/ 

/ 
/ 

O
tt.

 T
hl

cl
 n

•
 

Fo
r 

i 
~II

 
~
~
4
1
'
 

--
--

--
~
-
,
 

-
-
-

~
=
6
 

~,
 

Th
lc

kn
e1

1 
-
-
-

~
·
4
 

' 

1.5
 

2.
0 

2.
5 

M
ac

h 
N

um
be

r 

F
IG

. 
9.

 
T

he
 v

ar
ia

ti
on

 o
f 

th
e 

ch
or

dw
ts

e 
lo

ca
ti

on
 o

f 
ce

nt
er

 o
f 

p
re

ss
u

re
, 

x
/d

, 
w

it
h 

M
ac

h 
nu

m
be

r 
fo

r 
va

ri
ou

s 
as

pe
ct

 r
at

io
s 

fo
r 

re
v

er
se

d
 d

el
ta

 w
in

gs
 o

f 
pa

ra
bo

li
c 

cr
o

ss
 s

ec
ti

on
 w

it
h 

ze
ro

 
an

d 
5%

 t
hi

ck
 c

en
te

r 
se

ct
io

ns
. 

I -
-
-
-
-
-

-
-

--
--

--

3.
0 



0.30 

0.20 ' 

0.10 

0.00 
1.0 

'------ ~ - .. -- - -- i..--

{0% Thickn ess For At~ 4(i 
Af=OO 

---- At=4J 
'9=6 5% Thickness ---

1.5 2.0 

Mach Number 

2.5 3.0 

FIG. 10. The variation of the spanwise location of center of pressure, y jb, with Mach number 
for various aspect ratios for reversed delta wings of parabolic cross section with 
zero and 5 per cenl thick cenler sections. 
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The Swept Fin: 

Figure 6 indicates that spanwise loading on an infinite swept wing 
is not symmetrical. An approximate expression for the Ct of a swept 

- p 
fin will therefore be presented. It is assumed that pressure distri,;. 
bution is the same as that for an infinite swept wing and that the roll 
axis is located as indicated in Figure 12. 

The Ct - of a fin may be expressed as 
p 

1 b (y/m)+d 

cl. • ~ J J 
P o y/m 

(75) 

Substituting equation (67) into equation (75) and performing the indicated 
mathematical operations yields 

(76) 
D 

ft (0) + 2tfm.3 ( N@:m2 -1' (fTE) + 
r:t.4 r:t. I d 

~ 
d 

Figure 1.3 presents the variations of the C with aspect ratio 
. lp 

for- a 10 per cent thick wedge .for various sweepback angles at Mach number 

-(5:" This figure indicates that for a fin with a wedge cross section the 
difference between_ the C 2.. - of the linearized theoey and the C 1. - of the 
. p p 
second order theory increases with sweepback angle. 

Figure 14 presents the variations of the C with aspect ratio for - l 
p 

a fin with a cross section at y = 0 (5 per cent thick) given by 

z • x(d-x) 
lOd 
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x 

FIG. 12. Coordinates used in finding the approximate damping in roll coefficient, c1 , for a fin. 
p 
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FIG. 13. The variation of the approximate damping In roll coefficient, c1 , with aspect ratio 
p 

for a 10% thick fin with a wedge cross section for various sweepback angles at Mach 
number 2.236. 
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Mach number 2.236. 
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for various sweepback angles at Mach number ff. This figure indicates 
that for a fin with a parabolic cross section there is little difference 
between the values of the linear theory C 'l ·and those of the second order 

p 
theory C • 

'tp 

CONCLUDING REMARKS 

Most of the airfoils considered in the preceding analysis are not_ 
generally encountered in practice; howev:er, ·maey airfoils do ha'Ve regions 
with the sane pressure distributinn as airfoils considered-here. It is,
theref'Clt'e, possible to estimate fairly accurately the effect of thickness 
on the Cl. of maey airfoils not considered in the analysis. As an illus-

p . 
tration consider the C 'l.. of a rectangular airfoil with a wedge_ cross 

p 
section such as the rectangular fins considered in reference 14. Figure 
8 of reference 14 presents the c

1 
· of rectangular fins with 8 per cent 

p 
thickness. An estimate or the effect of thickness can be made by increasing 
the C '1. of the linearized theory by the same percentage as the thickness 

p 
increases the c 1. for an infinite wing. Figure 15 presents the vallles 

. p 
of the C 1. esti:ma.ted in this m;_mner as canpared to the experimental 

p 
values presented in 1'Jt.ference 14. It can be seen from this figure tb&t the 
agreement between theory and experiment has been improved considerably. 

The results of the present paper seem to indicate two general trends: 

l.; The effect of thickness on the C?. is quite small for the 
p 

airfoils with zero thickness trailing edges. 

2. The effect of thickness on the C 
1 

·· increases slightly with 
p 

sweepback angle. 

The airfoils considered in this paper have symmetrical thickness 
distributions •. But since the flows over the upper and lower-·surfaces 
of the airfoils treated herein are independent of' each other, aerodynamic 
properties of airfoils with similar planforms but with unsynnnetrical 
thickness distributions can easily be detemined from the results contained 
here. 

• 
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The limitations or the Busemann second order theory for two dimensionaJ. 
nows have been investigated (see reference 15) • Since the theory contained 
in the present paper is close'.cy associated with the Busemmm second order 
theory it seems like'.cy that the results presented herein have similar 
limitations. 

The type of analysis used in the present paper is not restric~ tO 
the study of airfoils with a constant rate of roll. An exaniination·of the 
partial differential equations and of the boundary conditions involved 
indicates that the same type .of analysis can be applied to airfoils " 
at a constant angle or attack, airfoils with a constant rate of pitch, 
and airfoils with simple unsteady mtions. 

JOHN C MARTIN 

9~ c,YY/~ 
NATHAN GERBER 

~~ 
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